

439 Water Supply Corporation 6202 Sparta Road Belton, TX 76513 http://www.439watersupply.com

Annual Water Quality Report for the period of January 1 to December 31, 2023.

439 Water Supply Corporation provides Purchased Surface Water from Bell County WCID 1, and the source is Lake Belton.

This report is intended to provide you with information about your drinking water and the efforts made by the water system to supply safe drinking water. The analysis was made by using the data from the most recent U. S Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what is in your drinking water.

Public Participation Opportunities: Monthly Board of Directors Meetings are held on the second Wednesday of each month. We are located at 6202 Sparta Rd. in Belton, TX and can be reached at (254) 933-2133.

Questions: For more information regarding this report please contact Jamie Davlin at (254) 933-2133.

En español: Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (254) 933-2133.

2023 ANNUAL DRINKING WATER QUALITY REPORT

439 WSC purchases water from Bell County WCID 1. WCID 1 provides purchased surface water from Lake Belton located in Bell County.

We routinely monitor constituents in your drinking water according to Federal and State laws. The test results table below shows the results of our monitoring for the period of January 1st to December 31st, 2023.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

BELL COUNTY WCID 1 (ID#: TX0140016)

	MCLG	MCL, TT, or MRDL	Detect	Range								
Contaminants	or MRDLG		In Your Water	Low	High	Sample Date	Violation	Typical Source				
Disinfectants & Disinfection By-Products (There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)												
	ng evidence th	at addition of a disinfectant is necessary	for control of	of microb	ial conta	uminants)						
Chloramine (as Cl2) (mg/L)	4	4	3.7	2	3.7	2023	No	Water additive used to control microbes				
Haloacetic Acids (HAA5) (ppb)	NA	60	15	NA	NA	2023	No	By-product of drinking water chlorination				
TTHMs [Total Trihalomethanes] (ppb)	NA	80	34.1	NA	NA	2023	No	By-product of drinking water disinfection				
Total Organic Carbon (% Removal)	NA	TT	NA	NA	NA	2023	No	Naturally present in the environment				
Inorganic Contan	ninants		I	1	T	r	ſ					
Barium (ppm)	2	2	.065	.0297	.065	2023	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits				
Cyanide (ppb)	200	200	100	20	100	2023	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories				
Fluoride (ppm)	4	4	.2	.2	.22	2023	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories				
Nitrate [measured as Nitrogen] (ppm)	10	10	.233	.11	.52	2023	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits				
Sodium (optional) (ppm)	NA		29.6	21.6	45.3	2023	No	Erosion of natural deposits; Leaching				
Microbiological C	Contaminants			1	1							
E. coli (RTCR) - in the distribution system	0	Routine and repeat samples are total coliform positive and either is E. coli - positive or system fails to take repeat samples following E. coli positive routine sample or system fails to analyze total coliform positive repeat sample for E. coli.	0	NA	NA	2023	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories				

MCLG	MCL	, TT, or MR	DL	Detect	Ra	nge	C I			
or MRDLG				In Your Water	Low	High	Sample Date	Violation	Typical Source	
NA		TT		NA	NA	NA	2023	No	Naturally present in the environment	
NA		0.3		100	NA	NA	2023	No	Soil runoff	
1 is a violation	n unless o	therwise appro	ved by							
3		3		.13	.1	.13	2023	No	Runoff from herbicide used on row crops	
MCLG	AL	Your Water		-	-		Exceeds AL	Typical Source		
1.0	1.3	.0227	20	023	0		No	Corrosion of ho Erosion of natu	ousehold plumbing systems ral deposits	
1.3	1.0							Corrosion of household plumbing Erosion of natural deposits		
	or MRDLG NA NA below the TT 1 is a violation ninants include 3 MCLG	or MRDLG NA NA below the TT value of 1 is a violation unless of innants including pesting 3 MCLG AL	or MRDLG NA TT NA 0.3 Poleow the TT value of .3. A value less 1 is a violation unless otherwise appro- ninants including pesticides and hert 3 3 MCLG AL Your Water	or MRDLG NA TT NA 0.3 Poleow the TT value of .3. A value less than 9 1 is a violation unless otherwise approved by ninants including pesticides and herbicides 3 3 MCLG AL Your Water Sam Data	or MRDLG In Your Water NA TT NA NA 0.3 100 Poleow the TT value of .3. A value less than 95% constit 1 is a violation unless otherwise approved by the state. 100 Sample 3 3 MCLG AL Your Water Sample Date	or MRDLG In Your Water NA TT NA TT NA 0.3 NA 0.3 Poleow the TT value of .3. A value less than 95% constitutes a TT 1 is a violation unless otherwise approved by the state. aninants including pesticides and herbicides 3 3 .13 .1 MCLG AL Your Water Sample Date # Sample Exceeding	or MRDLG In Your Water Iow High NA TT NA NA NA NA 0.3 100 NA NA NA 0.3 100 NA NA Pebelow the TT value of .3. A value less than 95% constitutes a TT violation 1 is a violation unless otherwise approved by the state. Triolation 3 3 .13 .1 .13 MCLG AL Your Water Sample Date # Samples Exceeding AL	or MRDLGIn Your WaterIn Your WaterSample DateNATTNANANA2023NA0.3100NANA2023NA0.3100NANA2023Pelow the TT value of .3. A value less than 95% constitutes a TT violation unless otherwise approved by the state.TT violation unless otherwise approved by the state.33.13.1.132023MCLGALYour WaterSample Date# Samples Exceeding ALExceeds AL	or MRDLG In Your Water In Your Water In Low High Sample Date Violation NA TT NA NA NA 2023 No NA 0.3 100 NA NA 2023 No Pelow the TT value of .3. A value less than 95% constitutes a TT violation. The highest single measurer 1 is a violation unless otherwise approved by the state. No No 3 3 .13 .1 .13 2023 No MCLG AL Your Water Sample Date # Samples Exceeding AL Exceeds AL Ty	

UNDETECTED CONTAMINANTS

The following contaminants were monitored for, but not detected, in your water.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your Water	Violation	Typical Source
Arsenic (ppb)	0	10	ND	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Nitrite [measured as Nitrogen] (ppm)	1	1	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

439 WSC (ID#: TX0140076)

Coliform Bacte	ria									
Maximum		Total Coliform		0	Fecal Coliform or E.		Total No. of Positive		Violation	Likely Source of
Contaminant Level		N	Iaximum	No. of	Coli Maximum		E. Coli o	r Fecal		Contamination
Goal	Goal		iminant Lev	el Positive	Contaminant Level		Coliform Samples			
	1 positive		itive monthly	у						Naturally present in the
0	0		sample.	1			0		No	environment
Lead and	Da	ate	MCLG	Action	90th	# Sites	Units Violation		Likely Source of Contamination	
Copper	Sam	pled		Level (AL)	Percentile	Over AL				
									Erosion of n	atural deposits; Leaching
Copper	08/17	/2022	1.3	1.3	0.1215	0	ppm	No	from wood	preservatives; Corrosion of
- • F F						Ť	rr		household p	lumbing systems

2023 Water Quality Test Results

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Haloacetic Acids (HAA5)	2023	17	9.6 - 21.1	No goal for the total	60	ppb	No	By-product of drinking water disinfection			
*The value in the Hi	ghest Level o	r Average Detecte	ed column is the h	ighest aver	age of all HAA:	5 sample resu	ults collected	at a location over a year			
Total Trihalomethanes (TTHM)	2023	39	29.2 -41.9	No goal for the total	80	ppb	No	By-product of drinking water disinfection			
*The value in the Hi	ghest Level o	r Average Detecte	ed column is the h	ighest aver	age of all TTHN	A sample res	ults collected	at a location over a year			
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Nitrate [measured as Nitrogen]	2023	0.21	0.19 - 0.21	10	10	ppm	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits			
Disinfectant Residu	al										
Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source of Drinking Water			
	2023	2.41	0.73 - 3.93	4	4	ppm	Ν	WCID 1 / Lake Belton			
Violations											
Revised Total Col	iform Rule	(RTCR)									
	nan or animal w	aste. Human pathog	gens in these wastes					licates that the water may be sea, headaches, or other symptoms. They			
Violation Type		violation Begin	Violation E	nd		V	iolation Exp	lanation			
Monitoring, Routine (RTCR)	, Major	10/01/2023	10/31/2023	В	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated						

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Where Do We Get Our Drinking Water? 439 WSC - PWS ID# TX0140076

TCEQ completed a source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s)from which we purchase our water received the assessment report. For more information on sources, water assessments and protection efforts at our system contact Jamie Davlin at 254-933-2133.

BELL COUNTY WCID 1 - PWS ID# TX0140016

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at the system contact Ricky Garrett, P. E. General Manager at 254-501-9243.

All Drinking Water May Contain Contaminants

When drinking water meets federal standards there may not be any health benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>http://www.epa.gov/safewater/lead</u>.

Definitions and abbreviations:

The charts on the previous pages contain scientific terms, measures, and abbreviations, some of which may require explanation. To help better understand these terms we have provided the flowing definitions:

Action Level or AL- The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg – Regulatory compliance with some MCLs is based on running annual average of monthly samples.

Level 1 Assessment – A Level 1 Assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 Assessment is an incredibly detailed study of the water system to identify potential problems and determine (if possible) shy an E. coli MCL violation has occurred and/or or why total coliform bacteria has been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG – The level of contaminant in drinking water below which there is no known or expected risk to health. MLCGs allow for a margin of safety.

Maximum Residual Disinfectant Level or MRDL – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of disinfectants is necessary for control or microbial contaminants.

Maximum Residual Disinfectant Level Goal or MRDLG – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL – Million Fibers per Liter (a measure of asbestos)

MG/L – Milligrams per Liter or Part per Billion

MNR - Monitoring not required, but recommended

MPL - State Assigned Maximum Permissible Level

MREM - Millirems per Year (a measure of radiation absorbed by the body).

NA – Not Applicable

 $\mathbf{ND} - \mathrm{Not} \ \mathrm{Detected}$

NTU - Nephelometric Turbidity Units (a measure of turbidity)

PCI/L – Picocuries per Liter (a measure of radioactivity)

PPB - Micrograms per Liter or Parts per Billion

PPM - Milligrams per Liter or Parts per Million

PPT – Parts per Trillion, or Nanograms per liter (ng/L)

Treatment Technique or TT – A required process intended to reduce the level of a contaminant in drinking water.

% Positive Samples / Month - Percent of samples taken monthly that were positive

Positive Samples – The number of positive samples taken that year.